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1. THE BMO APPROACH
In this paper we propose a new efficient mutation operator

for evolution strategies (ES) - the biased mutation operator
(BMO). This operator is capable of improving the success
rate to produce better offspring in constrained landscapes.
The idea of our approach is to bias the mutation ellipsoid
to lead the mutations into a more beneficial direction. Ex-
perimental results show that this bias enhances the solution
quality in constrained search problems. The number of ad-
ditional strategy parameters used in our approach equals to
the dimensions of the problem. Compared with the corre-
lated mutation, the BMO needs less memory. In addition,
the BMO supersedes the computation of the rotation matrix
of the correlated mutation and the asymmetric probability
density function of the directed mutation. Therefore, it de-
mands less computational cost and is easier to implement.

1.1 Standard Mutation
Besides crossover, mutation is the source for variations

in the evolutionary process. For ES in real-valued search
spaces, objective variables are mutated in the following way
in the case of uncorrelated mutation with one step size [1]:

~x
′ := ~x + ~z (1)

with the mutation

~z := σ(N1(0, 1), ...,NN (0, 1)) (2)

where Ni(0, 1) provides a random number based on a Gaus-
sian distribution with expected value 0 and standard devi-
ation 1. The strategy variable itself is mutated with the
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log-normal rule:

σ
′ := σe

(τN (0,1)) (3)

This mechanism is the key to self-adaptation of the step
sizes. In the state of the art (µ +, λ)-ES normally a vector
of nσ = N step sizes is used, which results in mutation
ellipsoids:

~z := (σ1N1(0, 1), ..., σNNN (0, 1)) (4)

The corresponding strategy parameter vector is mutated
with the extended log-normal rule:

~σ
′ := e

(τ0N0(0,1))
· (σ1e

(τN1(0,1)
, ..., σNe

(τNN (0,1)) (5)

The parameters τ0 and τ1 have to be tuned. Comprising,
an individual ~a consists of the object parameter set, the
mutation strength vector and the assigned fitness F(x). So
it can be represented as

~a = (x1, ..., xN , σ1, ..., σN , F (x)) (6)

1.2 Biased Mutation Operator (BMO)
Unlike directed mutation [3], the BMO does not change

the skewness, but biases the mean of the Gaussian distribu-
tion to lead the search into a more beneficial direction. This
is reflected in the success rate of producing superior off-
spring. For the BMO we introduce a bias coefficient vector
~ξ, which indicates the level of bias relative to the standard
deviation σ.

~ξ = (ξ1, ..., ξN ) with − 1 ≤ ξi ≤ 1 (7)

The bias vector ~b = (b1, ..., bN ) is then defined for every
i ∈ 1, ..., N by

bi = ξi · σi (8)

Since the absolute value of the bias coefficient ξi is less than
or equal to 1, the bias will be bound to the step sizes σi.
This restriction prevents the search from being biased too
far away from the parental individual. The BMO is oriented
to the standard mutation:

~x
′ := ~x + ~z. (9)

In detail the mutation for the BMO is defined as

~z := (σ1N1(0, 1) + b1, ..., σNNN (0, 1) + bN ) (10)

= (σ1N1(0, 1) + ξ1σ1, ..., σNNN (0, 1) + ξNσN ) (11)

= (σ1N1(ξ1, 1), ..., σNNN (ξN , 1)) (12)
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Figure 1: Shift of the center of the mutation ellipsoid

within the BMO. The bias vector ~b is bound to the
step sizes ~σ.

The last equation will be mainly used in the BMO mutation.
In terms of modifying the mutation strength, the aforemen-
tioned log-normal rule is applied. Furthermore, in the BMO
the bias coefficients are mutated in the following way:

ξi
′ = ξi + γ · N (0, 1) i = 1, ..., N. (13)

The parameter γ is a new parameter introduced for the
BMO to determine the mutation strength on the bias. In our
experiments the setting γ = 0.1 arises to be a recommend-
able setting. The BMO biases the mean of the mutation
and enables the evolution strategies to reproduce offspring
outside the standard mutation ellipsoid, i.e. σ · N (0, 1). To
direct the search the BMO uses a relatively simple way in
comparison with directed or correlated mutation. However,
it has got the same flexibility capable to adapt to disad-
vantageous search space characteristics. Figure 1 shows a
situation in which the BMO is advantageous. The parental
individual P1 has come close to the boundary of the feasible
search space. The success rate to produce better offspring
is relatively low because many mutations lie beyond the fea-
sible search space or have got a worse fitness. The bias

coefficient vector ~ξ improves the success rate situation. In a
word, this approach is as flexible as correlated and directed
mutation, but consumes less computational power. Figure
2 shows a comparison of the different mutation ellipsoids of
different mutation operators for evolution strategies.

(a)                                  (b)                                          (c)

Figure 2: The mutation ellipsoids of the differ-
ent mutation operators in a two-dimensional search
space. From left to the right: (a) scaled standard
mutation with N = 2 step sizes, (b) correlated mu-
tation resulting in rotation, (c) biased mutation bi-
asing the search into a certain direction.

2. EXPERIMENTAL RESULTS
For many optimization problems the search space is con-

strained due to logical or other kinds of conditions. Coello

pb best mean worst std.dev
2.40 -4999.7 -4911.5 -4691.6 3.5
g04 -30665.5 -30660.2 -30631.5 0.5

2.40 -5000.0 -5000.0 -5000.0 1.4 · 10−10

g04 -30665.5 -30665.5 -30665.5 3.2 · 10−4

Table 1: Experimental results of the evolution
strategies with standard mutation (upper part) and
the BMO (lower part).

[2] provides a comprehensive survey of various constraint
handling techniques. For evolutionary algorithms with a
self-adaptive step size mechanism like evolution strategies,
it is not easy to find an optimum which lies on the boundary
of the feasible search space due to premature step size reduc-
tion [5]. Individuals with big step sizes have got a smaller
probability to produce fit mutations when the optimum is
in the vicinity of the infeasible search space than individ-
uals with small step sizes. So, the step sizes reduce self-
adaptively before reaching the area of the optimum. This
results in premature fitness stagnation before approximating
the optimum. The experiments of the upper part of table 1
show this premature fitness stagnation. Given are the results
of a (15,300)-ES on problem 2.40 (taken from [5]) running
for 1000 generations, and of a (15,100)-ES on problem g04
(taken from [4]) running for 200 generations with uncorre-
lated standard mutation with n step sizes. The experiments
show that the evolution strategies are not able to approxi-
mate any of the optima of the constrained problems within
the given number of generations. Instead, the ES suffer from
fitness stagnation before reaching the optimum. The reason
for the fitness stagnation is that the success rate is disad-
vantageous near the boundary to the infeasible search space
and increases for decreasing step sizes. The experimental
results of our biased mutation operator on the constrained
test problems are shown in the lower part of table 1. Due
to the BMO approach the ES are capable of approximating
the optimum in every run on the two problems 2.40 and g04
within the given number of generations.
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